以下文章轉載自:
American Journal of Neuroradiology
Presurgical Mapping with fMRI and DTI: Soon the Standard of Care?
The technique of fMRI has been around for over 30 years, and DTI for about 15 years. The first application of fMRI was by Ogawa et al, in 1990. In a rat model, this team was able to manipulate the blood oxygen level–dependent (BOLD) signal by inducing changes in deoxyhemoglobin concentrations with insulin-induced hypoglycemia and anesthetic gases. About a year later, Kwong and Belliveau published the first images of cerebral areas that responded to visual stimulation and vision-related tasks.
DTI was first described by Basser et al, who were experimenting on a voxel-by-voxel characterization of 3D diffusion profiles, which took into account anisotropic effects (instead of eliminating them, as in standard DWI). Tractography (or fiber tracking) was developed by applying statistical models to DTI data to obtain anatomic fiber bundle information.
Although both fMRI and DTI are now currently available in most scanners, well beyond the framework of academic institutions and research protocols, these techniques are not quite considered “standard of care.” Indeed, the processes that govern the translation of new technology into clinical practice are complex. Even more complex are the processes that lead to establishing clinical practice as standard of care, particularly at a time when established patterns of care delivery are being increasingly challenged and economic difficulties affect all aspects of society, certainly including health care.
However, some challenges, especially with fMRI, go back to basic cerebrovascular physiology. The cerebrovascular response to neuronal activation, also referred to as “functional hyperemia,” was first recognized in 1890 by Roy and Sherrington, who initially proposed a metabolic hypothesis to the phenomenon, ie, mediation via release from neurons of vasoactive agents in the extracellular space. The major role of astrocytes as key intermediaries in the neurovascular response — being interposed between blood vessels and neuronal synapses via their foot processes as modeled in the “tripartite synapse model” of the neurovascular unit — has since been recognized. Although complex, astrocyte response to changes in synaptic activity is primarily mediated by glutamate receptors through changes in intracellular Ca2+ concentration.
In fMRI, contrast is based on the BOLD effect, which reflects local shifts of deoxygenated-to-oxygenated hemoglobin ratios due to local increases in blood flow in excess of oxygen utilization following brain activity. As a result, the foundation of the fMRI BOLD signal is based on local changes in cerebral blood flow that are not linearly related to the metabolic changes inducing the flow change.
Therefore, BOLD fMRI rests on 3 major approximations: 1) the technique does not directly reflect neural activity, ie, generation and propagation of action potentials, synaptic transmission, or neurotransmitter release/uptake; 2) the changes in BOLD signal originate from that portion of the vasculature experiencing the greatest change in oxygen concentration, which occurs in the venules in the immediate vicinity of the active neurons; and 3) more importantly, fMRI signal relies on intact “neurovascular coupling,” the phenomenon that links neural activity to metabolic demand and blood flow changes.
The main reason fMRI is clinically useful most of the time is that under most circumstances neurovascular coupling remains fully intact, unaltered by confounding disorders that can interfere with this relationship. However, it has long been known that neuronal activation results in local blood flow increases that exceed local oxygen consumption, so that the oxygen utilized may constitute a small fraction of the amount delivered. Under normal conditions, the oxygen concentration in draining venules increases during neuronal activation. The original researchers who discovered this phenomenon named it “neurovascular uncoupling” or “neurovascular decoupling.” From a medical perspective, “uncoupling” or “decoupling” implies a pathologic condition, suggesting something abnormal about tissue that demonstrates this phenomenon. More recently, researchers have preferred the term “functional hyperemia” to describe the phenomenon. In fact, when there is interference with the mechanism producing functional hyperemia, the term "neurovascular uncoupling" has been re-applied, albeit with a completely opposite meaning from that originally used. Impairment in the flow response leads to neurovascular uncoupling and a reduced BOLD signal in response to neural activity, which can lead to false-negative errors in fMRI maps.
John Ulmer, reporting on a series of 50 patients, found that although accurate cortical activation could be demonstrated most of the time, various cerebral lesions could cause false negatives in fMRI results when compared with other methods of functional localization, suggesting contralateral or homotopic reorganization of function. He further suggested that pathologic mechanisms such as direct tumor infiltration, neovascularity, cerebrovascular inflammation, and hemodynamic effects from high-flow vascular lesions (ie, arteriovenous malformations and fistulas) could trigger “neurovascular uncoupling” in those patients. Neurovascular uncoupling, and other pitfalls of fMRI, are briefly discussed.
David Mikulis discusses “neurovascular uncoupling syndrome,” where lack of functional hyperemia during neuronal activation can have long-term consequences on the integrity of the tissue in the absence of acute ischemia.
Jay Pillai discusses the successful clinical application of a technique to improve the consistency of BOLD fMRI by using a breath-holding technique.
Aaron Field discusses the technique, clinical use, and some limitations of DTI and tractography, and describes patterns of alteration of white matter fiber tracts by neoplasms and other lesions.
Lastly, Wade Mueller shows that a neurosurgeon may obtain significant improvements in clinical outcomes and a drastic reduction in complication rates when working with a team that provides presurgical mapping of cerebral lesions by using fMRI and DTI (wisely, fully acknowledging their limitations) and when various team members clearly communicate using a common language.
Functional MRI and DTI are extremely useful techniques that have become increasingly available to neuroradiologists in recent years. As with any technique, these work best as parts of a whole. A good understanding of physiologic mechanisms is necessary to make us good “functional” specialists, and a good understanding of the limitations of any technique is necessary to make us better physicians.
Image modified from: Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns.
美德醫療深耕醫療設備研發制造多年,憑借對臨床需求的精準洞察與前沿技術的持續攻關,在醫療技術創新賽道穩步前行,已成為兼具技術深度與行業口碑的醫療企業。6月,美德醫療火力全開,接連亮相香港理工大學UBSN神經科學會議&研討會、廣東省醫學會第14次影像技術學學術會議、湖南省醫師協會放射醫師分會2025年學術年會…以硬核產品與創新方案,點燃展臺人氣,收獲行業高度關注!神經科學前沿:香港理工大學UBSN會議在香港理工大學UBSN神經科學會議&研討會上,美德醫療聚焦神經科學領域需求,攜fMRI腦科學整體解決方案參展。模擬磁共振系統助力受試者提前適應掃描環境,腦功能視聽覺刺激系統可精準呈現刺激任務誘導特定腦區激活,磁共振腔內監測系統則實時保障數據質量。三者協同發力,為任務態 fMRI 研究與診療提供全流程支持,助力神經科學邁向更精準、高效方向。影像技術盛會:廣東省醫學會影像技術學會議廣東省醫學會第14次影像技術學學術會議現場,美德醫療以“專業影像配套設備提供商”身份亮相現場,其國內率先通過NMPA認證的磁共振病人監護儀成為全場焦點。這款設備突破傳統監護儀在強磁場環境下的應用限制,通過特殊屏蔽技術與抗干擾設計,實現磁共振檢查過程中對患者生命體征的實時監測,對危重患者、鎮靜中的小兒患者、麻醉病人等特殊情況下進行的磁共振檢查而言,為醫療安全提供了堅實保障。圍繞新產品新技術新應用,美德團隊積極與臨床及一線學者展開深度交流,共同推動影像技術的進步與發展。專業培訓學術賦能:第十五屆《MRI 信號分析與圖像解讀》高級培訓班與北京友誼醫院合作舉辦的MRI信號分析與圖像解讀培訓班已延續至第十五屆,組織培養了近萬名放射科醫生參與深度學習及交流,一直由美德醫療全面負責項目的運行服務工作,為歷屆培訓班的順利開展保駕護航。本次培訓班匯聚了國內知名磁共振專家,課程設置精心,理論與實踐并重,致力于讓大家學有所成,攜手共進,為提升我國醫學影像水平、造福廣大患者而不懈努力!放射醫師年會:湖南省醫師協會放射分會年會6月27-29日,亮相湖南省醫師協會放射醫師分會2025年學術年會,美德醫療基于對放射醫學領域的持續深耕,精心呈現“磁共振被試監測與監護系列”,通過不同視野、不同刷新率滿足各應用場景的定制要求,多種生理信號采集方式監測患者生命體征,以及定制化軟件進行眼動追蹤和頭動調整,實時監測人物狀態,提升掃描數據質量,為放射醫學發展注入“美德力量”,協同發展放射診療質量提升路徑。四場行業學術會議的精彩亮相,是美德醫療技術實力與品牌魅力的生動展現。未來,美德醫療將持續深耕醫療領域,以創新驅動發展,以技術為鑰,以客需為錨,以匠心為帆,為行業發展、醫療服務升級輸出更多價值,期待與您再次相聚!
在醫療科技領域,國產化創新力量正強勢崛起,不斷突破技術壁壘,改寫行業格局。美德醫療自主研發的磁共振病人監護儀作為國內國產無磁監護領域率先通過NMPA注冊的產品,自上市以來成績卓著,僅半年便在數十家醫療機構成功裝機,掀起了無磁監護設備國產化應用的熱潮。自 2004 年成立以來,美德醫療便錨定磁共振專業配套產品研發方向,深耕細作二十余載。憑借一支勇于創新、專業務實的高素質團隊,在腦功能磁共振成像(fMRI)專業設備及技術研發生產領域披荊斬棘,積累了深厚底蘊。此次磁共振病人監護儀的問世,是公司在高新技術國產化征程中邁出的堅實一大步,打破了長期以來國外產品在該領域的壟斷局面,填補了國產空白市場,彰顯出強大的技術實力與創新魄力。部分裝機照片該監護儀采用先進磁兼容技術,在強磁場環境下運行穩定,精準監測患者血氧飽和度、血壓、脈率、灌注等關鍵生命體征,為磁共振檢查中的患者安全筑牢防線。在性能穩定性、監測精準度、操作便捷性等方面表現出色,契合臨床需求,短短半余年,裝機用戶已覆蓋數十家醫療機構,遍布北京、上海、山西、陜西、四川、山東、江蘇、浙江、廣東等省份,以卓越性能和品質贏得市場認可!部分裝機照片未來,美德醫療將持續加大研發投入,立足國產化創新,推動技術與產品迭代升級,為醫療影像事業發展注入更多本土智慧與力量。同時,不斷提升產品質量與服務水平,為廣大用戶打造更優質、全面的醫學影像配套解決方案。
2025年4月13日,由深圳市美德醫療電子技術有限公司主辦的第15屆Task-fMRI基礎培訓班在深圳總部圓滿收官。來自全國各地醫療機構、高校的臨床醫生、科研萌新齊聚鵬城,通過三天的理論實踐深度交融,完成對fMRI技術的系統性學習,助力學員掌握fMRI技術的核心技能。培訓班延續"理實結合、學科交叉"的特色,特邀深圳大學成曉君教授、王超教授等領銜授課。課程設置兩大核心模塊:基礎理論精講涵蓋fMRI原理、實驗范式設計及統計學應用;實踐操作帶教覆蓋E-Prime任務編程、SPM數據處理全流程。注重培養學員的自主操作能力,使學員們能夠切實掌握Task-fMRI的數據處理方法,實現從零基礎到獨立完成數據處理過程。為響應學員在教學過程中反饋的需求:結合核磁掃描及配套腦科學研究設備的操作使用,系統梳理fMRI實驗從設備操作到數據采集的全流程。吳杞柱博士帶領一眾學員觀摩了美德醫療一系列腦科學研究設備,詳細介紹了美德模擬磁共振(Mock MR)、磁共振多參數被試監測系統以及腦功能視聽覺刺激系統在fMRI實驗中的使用,加深學員對task fMRI數據采集過程的理解。為期三天緊湊而豐富的教學及實操課程,讓一眾學員們表示受益匪淺,他們認為這次培訓干貨滿滿,不僅提高了自己的專業技能,還為今后的研究工作提供了有力的支持。未來,我們將繼續深耕腦智科學基礎研究領域,持續服務于客戶需求,致力于打造醫學影像醫學研用一體化平臺,為中國腦科學事業發光發熱!
繪成錦繡展舊歲,揄揚風雅待新年。近日,美德醫療2024年度總結大會完美收官。年會上半部分,由部門領導依次匯報各部門年度工作,全面復盤項目進度,匯總生產基本情況,盤點體系運營工作,歸總成本把控效用,分析市場趨勢變動,進而結合公司戰略規劃及市場宏觀環境進行2025年的工作部署。年會下半部分,多才多藝的美德人帶來了一場場精彩絕倫的文藝表演,《吉他串燒》展現了員工朝氣蓬勃、積極向上的精神風貌,幽默詼諧的脫口秀更是引得全場笑聲連連,掌聲雷動。最后,由總經理湯潔女士壓軸點評與總結,回望2024年的發展歷程,美德醫療始終本著客需為本、品質為先的發展理念,致力于專研更精尖的產品,拓展更專業的技術領域,完善產學研用一體化平臺,打造更完整的醫學影像整體解決方案。未來,也將繼續用心服務每一位客戶,譜寫2025年“奮進”新藍圖!
都說北京的秋天是出了名的美好,老舍先生也說:秋天一定要住北平。我們心心念念了一整年,大Boss一聲令下,我們出發啦! 11月18日,美德同事一行40人,帶著南國的熱情,從一個只有夏天和冬天的城市,以深圳的速度和激情,飛抵四季分明的北京,一同領略北國的秋韻。 北京的秋天果然很美,美得出乎意料,瓦藍的天空將整個城市映襯得干凈而清朗,金黃的銀杏葉燦爛奪目,驚起南方大小土豆“哇”聲一片,深秋的暖陽透過紅葉的縫隙照射到行人臉上,人們的笑容是如此陽光明媚……我們參加升旗儀式,感受國歌的莊嚴和力量;我們登天安門城樓,感受歷史的厚重與嚴肅;我們瞻仰人民英雄紀念碑,緬懷先烈的勇敢無畏;我們在天安門廣場踱步,回望歷史長河,感嘆中華文明。我們熱淚盈眶,我們躊躇滿志,我們自豪驕傲。何其有幸,生在春風里,長在紅旗下。我們驕傲,因為我們是中國人!俯瞰神州大地,目光所至,皆為華夏;五星閃耀,皆為信仰。 當五星紅旗隨著太陽徐徐升起的那一刻,愛國情懷已深深植根于我們每個人心間,它將生生不息,代代相傳。 走進故宮,其巧妙的結構、華麗的造型、博大的氣魄,無一不展示著古代皇權的霸氣和自信,讓人感到無比震撼。故宮的藝術之美,歷史之美,文化之美,舉世無雙。圓明園,這里的湖泊、假山和古建筑,共同演繹著和諧之美。坐上時光巴士,一幅幅流動的畫卷,讓人仿佛回到三百年前,自己就是那宮廷院內的一員,沉浸式體驗了穿越歷史的樂趣。這里匯聚了自然之美、藝術之美和精神之美。漫步圓明園,感受歷史的厚重與歲月的沉淀,每一處都是故事,每一景都是回憶。秋天的長城,猶如一條蜿蜒的巨龍,盤旋在群山峻嶺之間,披著金色的霞光,沐浴在涼爽的秋風中。長城之上,步步皆歷史,磚磚顯風華,攀登之間,感受千年滄桑。太陽照,長城長,長城雄風萬古揚。中國軍事博物館—軍事之翼,博物館里展翅,榮耀之光熠熠生輝。館內各種模型、圖片和實物,將戰爭的殘酷和城市的堅韌展示得淋漓盡致。站在這些展品前,你會不禁為那些捍衛和平的勇士們感到自豪,并深深體會到保家衛國的重要性。雍和宮的每一座大殿、每一尊佛像、每一道門檻,都是歷史的沉淀和文化的傳承,這里的一景一物,無不在訴說著一個時代的輝煌。 歷史文化之旅, 國子監是必去之地,它被譽為中國古代最高學府。在這里的每一步行走, 都似在與古人先賢對話,你能強烈感受到古代崇文重教的氛圍,以及古代學術的繁榮與嚴謹。游玩是生活的調味劑,但工作的責任心始終掛在心頭,這不是負擔,是美德人的情懷和使命。 抵達當晚,同事們顧不上早起的疲憊和一路奔波的辛苦,饒有興致地參觀了中科院生物物理所腦與認知國家重點實驗室。美德公司成立至今,已有多款產品應用于中科院腦科學研究試驗。同事們與相關專家進行了深入的技術交流,這種面對面的溝通有利于我們改進產品,提升品質和更好地服務祖國醫學科研事業。我司與清華大學生物醫學影像中心也已合作多年,20日下午,同事們帶著激動的心情走進這座神圣的高等學府,在研究中心實驗室和老師們進行了熱切而實質的交流。切磋完畢,同事們漫步清華校園,盡情地吸取這座智慧殿堂帶來的榮耀和力量。觀光旅游的同時兼有學術交流,此行簡直不要太超值。能為中國醫學事業做出自己應有的貢獻,美德人當仁不讓。提高中國醫療科研水平,我們深感責任深重;展望未來,我們信心滿懷。 游頤和園,觀天壇,打卡恭王府,我們在景山公園探尋歷史足跡,我們在北海公園信步,漢服體驗,我們在后海的巷子里閑逛,品嘗北京小吃,我們在德云社里聽相聲……我們沉醉于長安街的華燈初上,又被鳥巢和水立方的璀璨燈光所驚艷,我們驚嘆于國家大劇院的夜景,又在前門大街的暮色里探尋……大鴨梨餐廳的北京烤鴨,油亮酥脆的外皮和柔嫩多汁的鴨肉相得益彰,色香味俱佳。咬一口,那酥皮流出的油脂在舌尖瞬間流轉,香氣四溢,每一口都是對中華美食的敬仰。 東來順的涮羊肉,熱氣騰騰,暖胃更暖心,團隊圍坐,笑語連連,推杯換盞,同事情誼在這一刻悄然升溫。 此次北京之行歷時5天,既是團建,也是一趟愛國主義教育之旅,還是一趟飽覽中華五千年文明歷史的文化之旅;既是旅游,也是游學;既是游玩,順帶工作,行程豐富,收獲滿滿。 揮別北京,那胡同里斑駁的墻,紫禁城里威嚴的梁,天安門前的紅旗飄揚,故宮深院的悠長,一幕幕在眼前回蕩,京城之行皆是華章。團隊相伴凝聚力量,為夢續航。 盼與美德攜手共赴新程,再書佳績!